3-6 Problem Solving: Using Charts

Objective: To organize the facts of a problem in a chart.
Example 1 Organize the given information in a chart: In game 1 Jesse scored twice as many points as Ramon. In game 2 Jesse scored six fewer points than he did in game 1 . In game 2 Ramon scored eight more points than he did in game 1 .

Solution

	Game 1 points	Game 2 points
Jesse	$2 n$	$2 n-6$
Ramon	n	$n+8$

Example 2 Solve the problem using the two given facts:

Find the number of Calories in a banana and in a peach.
(1) A banana contains 65 Calories more than a peach.
(2) Ten peaches have 50 fewer Calories than 4 bananas.

Solution

Step 1 The problem asks for the number of Calories in a banana and in a peach.
Step 2 Let $p=$ the number of Calories in a peach.
Then $p+65=$ the number of Calories in a banana.

	Calories per fruit \times Number of fruit $=$ Total Calories		
Peach	p	10	$10 p$
Banana	$p+65$	4	$4(65+p)$

Step 3 Calories in 10 peaches $=$ Calories in 4 bananas -50
$\begin{array}{lll} & & 10 p=4(p+65)-50 \\ \text { Step } 4 & \text { Solve. } & 10 p=4 p+260-50\end{array}$
$6 p=210$
$p=35$ and $p+65=100$
Step 5 Check: (1) 100 Calories is 65 more than 35 Calories. (2) Ten peaches have $10 \cdot 35$, or 350 , Calories and four bananas have $4 \cdot 100$, or 400 , Calories. $350=400-50 \mathrm{~V}$ There are 35 Calories in a peach and 100 Calories in a banana.

Solve each problem using the two given facts. If a chart is given, complete the chart to help you solve the problem.

1. Find the number of full 8 hour shifts that Cleo worked last month.
(1) He worked three times as many 8 hour shifts as 6 hour shifts.
(2) He worked a total of 180 hours.

	Hours per Shift	\times	No. of Shifts		$=$ Total hours worked
6 h shift	$?$	x	$?$		
8 h shift	$?$	$?$	$?$		

3-6 Problem Solving: Using Charts (continued)

2. Find the total weight of the boxes of cheddar cheese in a shipment of 3 lb boxes of cheddar cheese and 2 lb boxes of Swiss cheese.
(1) There were 20 fewer 2 lb boxes of Swiss cheese than 3 lb boxes of cheddar cheese.
(2) The total weight of the shipment was 510 lb .

	Weight per box \times		Number of boxes
$=$	Total weight		
Cheddar	$?$	x	$?$
Swiss	$?$	$?$	$?$

3. Find the number of 20 -ride tickets sold.
(1) Twenty times as many 8 -ride tickets as 20 -ride tickets were sold.
(2) The total number of tickets represented 3600 rides.

	Rides per ticket \times Number of tickets sold $=$		
Total rides			
20-ride tickets	$?$	n	$?$
8-ride tickets	$?$	$?$	$?$

4. Find the amount of time Maurice spent taking bowling lessons.
(1) He took three times as many 2 h bowling lessons as he did 1 h tennis lessons.
(2) He spent a total of 28 h taking bowling lessons and tennis lessons.

	Hours per lesson \times		Number of lessons
	$=$	Total time	
Bowling	$?$	$?$	$?$
Tennis	$?$	$?$	$?$

5. Find the number of Calories in a grapefruit and an orange.
(1) An orange has 15 more Calories than a grapefruit.
(2) Twenty oranges and ten grapefruit have 1800 Calories.
6. Find the number of Calories in a honeydew and in a cantaloupe.
(1) A honeydew has 20 more Calories than a cantaloupe.
(2) Six honeydew and three cantaloupes have 750 Calories.

Mixed Review Exercises

Solve.

1. $15 x=360$
2. $6=\frac{3}{5} x$
3. $9 z-5 z=0$
4. $165=3 x$
5. $6 y+5=35$
6. $-10+3 y=-28$
7. $4 x-x=21$
8. $3(x+2)=4 x$
9. $6 x-7=2 x+41$
10. $21-x=1-6 x$
11. $-x=3 x-52$
12. $5(y+1)+3=3 y-20$

3-7 Cost, Income, and Value Problems

Objective: To solve problems involving cost, income, and value.

Formulas

Cost $=$ number of items \times price per item
Income $=$ hours worked \times wage per hour
Total value $=$ number of items \times value per item

Example 1 Tickets for a concert cost $\$ 8$ for adults and $\$ 4$ for students. A total of 920 tickets worth $\$ 5760$ were sold. How many adult tickets were sold?

Solution

Step 1 The problem asks for the number of adult tickets sold.
Step 2 Let $x=$ the number of adult tickets sold.
Then $920-x=$ the number of student tickets sold.
Make a chart.

	Number	\times Price per ticket $=$	Cost
Adult	x	8	$8 x$
Student	$920-x$	4	$4(920-x)$

Step 3 The only fact not recorded in the chart is that the total cost of the tickets was $\$ 5760$. Write an equation using this fact.
Adult ticket cost + Student ticket cost $=5760$
$8 x+4(920-x)=5760$
Step 4

$$
\begin{aligned}
8 x+4(920-x) & =5760 \\
8 x+3680-4 x & =5760 \\
4 x+3680 & =5760 \\
4 x & =2080 \\
x & =520 \\
920-x & =400
\end{aligned} \text { adult tickets }
$$

Step 5 Check: 520 adult tickets at $\$ 8$ each cost $\$ 4160$.
400 student tickets at $\$ 4$ each cost $\$ 1600$.
The total number of tickets is $520+400$, or $920 . \sqrt{ }$
The total cost of the tickets is $\$ 4160+\$ 1600$, or $\$ 5760$. $\sqrt{ }$
520 adult tickets were sold.

Solve. Complete the chart first.

1. Forty students bought caps at the baseball game. Plain caps cost \$4 each and deluxe ones cost \$6 each. If the total bill was $\$ 236$, how many students bought the deluxe cap?

	Number \times Price $=$	Cost	
Deluxe	d	$?$	$?$
Plain	$?$	$?$	$?$

\qquad

3-7 Cost, Income, and Value Problems (continued)

Solve. Complete the chart first.

2. Adult tickets for the game cost $\$ 6$ each and student tickets cost $\$ 3$ each. A total of 1040 tickets worth $\$ 5400$ were sold. How many student tickets were sold?

	Number \times Price	$=$	Cost
Adult	$?$	$?$	$?$
Student	s	$?$	$?$

3. A collection of 60 dimes and nickels is worth $\$ 4.80$. How many dimes are there?
(Hint: In your equation, use 480c, instead of $\$ 4.80$.)

	Value		
Number \timesTotal of coin	value		
Dimes	d	$?$	$?$
Nickels	$?$	$?$	$?$

4. A collection of 54 dimes and nickels is worth $\$ 3.80$. How many nickels are there?
(Hint: In your equation, use 380 c instead of $\$ 3.80$.)

	Value of coin		
	Total value		
Dimes	$?$	$?$	$?$
Nickels	n	$?$	$?$

5. Henry paid $\$.80$ for each bag of peanuts. He sold all but 20 of them for $\$ 1.50$ and made a profit of $\$ 54$. How many bags did he buy? (Hint: Profit $=$ selling price - buying price.)
6. Paula paid $\$ 4$ for each stadium cushion. She sold all but 12 of them for $\$ 8$ each and made a profit of $\$ 400$. How many cushions did she buy? (Hint: Profit = selling price - buying price.)

	Number	\times Price (c)	$=$ Cost (c)
Bought	b	$?$	$?$
Sold	$?$	$?$	$?$

	Number \times Price (c)	$=$ Cost (c)	
Bought	b	$?$	$?$
Sold	$?$	$?$	$?$

Solve. Make and complete a chart first.

7. I have three times as many dimes as quarters. If the coins are worth $\$ 6.60$, how many quarters are there?
8. I have 12 more nickels than quarters. If the coins are worth $\$ 5.40$, how many nickels are there?

Mixed Review Exercises

Simplify.

1. $\frac{30 \div 5+2}{13-5}$
2. $24 \div \frac{1}{4}$
3. $\frac{1}{4}(28 y-12)+6$
4. $(-5)(4)(-2)$
5. $3(2 x+5)+4(-x)$
6. $6(x-y)+5(2 y+x)$

Evaluate if $a=2, b=3$, and $c=8$.
7. $\frac{3 a+b}{c-5}$
8. $\frac{b c}{2 a}$
9. $2(c-a)-b \div 3$

